Part Number Hot Search : 
GM71V NCS2510D N25F80 HT48C30 PEB2086 SK29A GCM155R7 ACD090
Product Description
Full Text Search
 

To Download OP18305 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 5 MHz Single-Supply Operational Amplifier OP183
FEATURES
Single supply: 3 V to 36 V Wide bandwidth: 5 MHz Low offset voltage: 1 mV High slew rate: 10 V/s Low noise: 10 nV/Hz Unity gain stable Input and output range includes GND No phase reversal
PIN CONNECTION
NULL 1 -IN 2 +IN 3
8
NC V+
00292-001
OP183
7
6 OUT TOP VIEW V- 4 (Not to Scale) 5 NULL
Figure 1. 8-Lead Narrow Body SOIC (S Suffix)
APPLICATIONS
Multimedia Telecom ADC buffers Wide band filters Microphone preamplifiers
GENERAL DESCRIPTION
The OP183 is a single-supply, 5 MHz bandwidth amplifier with slew rates of 10 V/s. It can operate from voltages as low as 3 V and up to 36 V. This combination of slew rate and bandwidth yields excellent single-supply ac performance, making this amplifier ideally suited for telecom and multimedia audio applications. The OP183 also provides good dc performance with guaranteed 1 mV offset. Noise is a respectable 10 nV/Hz. Supply current is only 1.2 mA per amplifier. This amplifier is well suited for single-supply applications that require moderate bandwidth even when used in high gain configurations. This makes it useful in filters and instrumentation. The output drive capability and very wide full-power bandwidth of the OP183 make it a good choice for multimedia headphone drivers or microphone input amplifiers. The OP183 is available in a SO-8 surface-mount package. It is specified over the extended industrial (-40C to +85C) temperature range.
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2005 Analog Devices, Inc. All rights reserved.
OP183 TABLE OF CONTENTS
Specifications..................................................................................... 3 Electrical Characteristics @ VS = 5 V......................................... 3 Electrical Characteristics @ VS = 3 V......................................... 4 Electrical Characteristics @ VS = 15 V.................................... 5 Absolute Maximum Ratings............................................................ 6 ESD Caution.................................................................................. 6 Typical Performance Characteristics ............................................. 7 Applications..................................................................................... 13 Offset Adjust ............................................................................... 13 Phase Reversal............................................................................. 13 Direct Access Arrangement ...................................................... 13 5 V Only Stereo DAC for Multimedia ..................................... 13 Low Voltage Headphone Amplifiers........................................ 14 Low Noise Microphone Amplifier for Multimedia ............... 14 3 V 50 Hz/60 Hz Active Notch Filter with False Ground ..... 14 Low Voltage Frequency Synthesizer for Wireless Transceiver .................................................................................. 15 Outline Dimensions ....................................................................... 16 Ordering Guide .......................................................................... 16
REVISION HISTORY
5/05--Rev. C to Rev. D Updated Format.................................................................. Universal Removed OP283 ................................................................. Universal Updated Outline Dimensions ........................................................16 Changes to Ordering Guide ...........................................................16 2/02--Rev. B to Rev. C Edits to FEATURES...........................................................................1 Edits to GENERAL DESCRIPTION...............................................1 Edits to SPECIFICATIONS......................................................... 2-3 Edits to Package Type........................................................................4 Edits to ORDERING GUIDE...........................................................4 Edits to ABSOLUTE MAXIMUM RATINGS ...............................4 Edits to OUTLINE DIMENSIONS ...............................................12 Revision 0: Initial Version
Rev. D | Page 2 of 16
OP183 SPECIFICATIONS
ELECTRICAL CHARACTERISTICS @ VS = 5 V
TA = 25C, unless otherwise noted. Table 1.
Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift Bias Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density en p-p en in 0.1 Hz to 10 Hz f = 1 kHz, VCM = 2.5 V 2 10 0.4 V p-p nV/Hz pA/Hz SR BWp tS GBP m RL = 2 k 1% Distortion To 0.01% 5 10 >50 1.5 5 46 V/s kHz s MHz Degrees PSRR ISY VS VS = 4 V to 6 V, -40C TA +85C VO = 2.5 V, -40C TA +85C 3 1.2 1.5 18 mA V 70 104 dB Symbol VOS IB IOS Conditions VCM = 2.5 V, VOUT = 2.5 V, -40C TA +85C VCM = 2.5 V, VOUT = 2.5 V, -40C TA +85C VCM = 2.5 V, VOUT = 2.5 V, -40C TA +85C 0 CMRR AVO VOS/T IB/T VOH VOL ISC VCM = 0 to 3.5 V -40C TA +85C RL = 2 k, 0.2 VO 3.8 V 70 100 104 4 -1.6 RL = 2 k to GND RL = 2 k to GND Source Sink 4.0 4.22 50 25 30 Min Typ 0.025 350 430 11 Max 1.0 1.25 600 750 50 3.5 Unit mV mV nA nA nA nA V dB V/mV V/C nA/C V mV mA mA
75
Rev. D | Page 3 of 16
OP183
ELECTRICAL CHARACTERISTICS @ VS = 3 V
TA = 25C, unless otherwise noted. Table 2.
Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Gain Bandwidth Product NOISE PERFORMANCE Voltage Noise Density en f = 1 kHz, VCM = 1.5 V 10 nV/Hz GBP 5 MHz PSRR ISY VS = 2.5 V to 3.5 V, -40C TA +85C -40C TA +85C, VO = 1.5 V 60 113 1.2 1.5 dB mA Symbol VOS IB IOS Conditions VCM = 1.5 V, VOUT = 1.5 V, -40C TA +85C VCM = 1.5 V, VOUT = 1.5 V, -40C TA +85C VCM = 1.5 V, VOUT = 1.5 V, -40C TA +85C 0 CMRR AVO VOH VOL ISC VCM = 0 V to 1.5 V, -40C TA +85C RL = 2 k, 0.2 VO 1.8 V RL = 2 k to GND RL = 2 k to GND Source Sink 70 100 2.0 103 260 2.25 90 25 30 125 Min Typ 0.3 350 Max 1.0 1.25 600 750 50 1.5 Unit mV mV nA nA nA nA V dB V/mV V mV mA mA
11
Rev. D | Page 4 of 16
OP183
ELECTRICAL CHARACTERISTICS @ VS = 15 V
TA = 25C, unless otherwise noted. Table 3.
Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift Bias Current Drift Long-Term Offset Voltage OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Open-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density
1
Symbol VOS
Conditions
Min
Typ 0.01
Max 1.0 1.25 600 750 50 +13.5
Unit mV mV nA nA nA V dB V/mV V/C nA/C mV V
-40C TA +85C IB IOS CMRR AVO VOS/T IB/T VOS VOH VOL ISC ZOUT PSRR ISY VS SR BWp tS GBP m en p-p en in 0.1 Hz to 10 Hz f = 1 kHz RL = 2 k 1% Distortion To 0.01% -40C TA +85C -40 TA +85C -15 VCM = -15 V to +13.5 V, -40C TA +85C RL = 2 k 70 100 86 1000 3 -1.6 300 400 11
Note 1 RL = 2 k to GND, -40C TA +85C RL = 2 k to GND, -40C TA +85C Source Sink f = 1 MHz, AV = +1 VS = 2.5 V to 18 V, -40C TA +85C VS = 18 V, VO = 0 V, -40C TA +85C 3 10 15 50 1.5 5 56 2 10 0.4 1.2 70 112 13.9 14.1 -14.05 30 50 15
1.5
-13.9
V mA mA
dB 1.75 18 mA V V/s kHz s MHz Degrees V p-p nV/Hz pA/Hz
Long-term offset voltage is guaranteed by a 1,000 hour life test performed on three independent lots at 125C, with an LTPD of 1.3.
Rev. D | Page 5 of 16
OP183 ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Supply Voltage Input Voltage Differential Input Voltage 1 Output Short-Circuit Duration to GND Storage Temperature Range S Package Operating Temperature Range OP183 Junction Temperature Range S Package Lead Temperature Range (Soldering 60 sec)
1
Rating 18 V 18 V 7 V Indefinite -65C to +150C -40C to +85C -65C to +150C 300C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply to packaged parts, unless otherwise noted. Table 5.
Package Type 8-Lead SOIC (S)
1
JA1 158
JC 43
Units C/W
For supply voltages less than 7 V, the absolute maximum input voltage is equal to the supply voltage. Maximum input current should not exceed 2 mA.
JA is specified for worst-case conditions; in other words, JA is specified for device soldered in circuit board for SOIC packages.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. D | Page 6 of 16
OP183 TYPICAL PERFORMANCE CHARACTERISTICS
80 70 60 50 40 30 20
00292-002
160
VS = 5V 300X OP AMPS
140 120 100 80 60 40
-40C = TA +85C 300X OP AMPS PLASTIC PACKAGE
QUANTITY (Amplifiers)
QUANTITY
0
-600
-400
-200
0
200
400
600
0 0 2 4 6 TCVOS (V/C) 8 10 12
INPUT OFFSET VOLTAGE (V)
Figure 2. OP183 Input Offset Voltage Distribution @ 5 V
80 70 60 50 40 30 20
00292-003
Figure 5. OP183 Input Offset Voltage Drift (TCVOS) Distribution @ 15 V
3
MAXIMUM OUTPUT SWING (V p-p)
VS = 5V 300X OP AMPS
TA = 25C RL = 2k VS = 3V 2
QUANTITY
1
0
-600
-400
-200
0
200
400
600
0
1k
10k
100k FREQUENCY (Hz)
1M
10M
INPUT OFFSET VOLTAGE (V)
Figure 3. OP183 Input Offset Voltage Distribution @ 15 V
160 140 120 100 80 60 40
00292-004
Figure 6. OP183 Maximum Output Swing vs. Frequency @ 3 V
5
MAXIMUM OUTPUT SWING (V p-p)
-40C = TA +85C 300X OP AMPS PLASTIC PACKAGE
4
TA = 25C RL = 2k VS = 5V
QUANTITY (Amplifiers)
3
2
1
00292-007
20 0 0 2 4 6 TCVOS (V/C) 8 10 12
0
1k
10k
100k FREQUENCY (Hz)
1M
10M
Figure 4. OP183 Input Offset Voltage Drift (TCVOS) Distribution @ 5 V
Figure 7. OP183 Maximum Output Swing vs. Frequency @ 5 V
Rev. D | Page 7 of 16
00292-006
10
00292-005
10
20
OP183
30 TA = 25C RL = 2k VS = 15V
500 VS = 15V, VS = +5V
MAXIMUM OUTPUT SWING (V p-p)
25
20
INPUT BIAS CURRENT (nA)
400
300 VS = +3V
15
200
10
5
00292-008
100
00292-011
0
1k
10k
100k FREQUENCY (Hz)
1M
10M
0 -75
-50
-25
0
25
50
75
100
125
TEMPERATURE (C)
Figure 8. OP183 Maximum Output Swing vs. Frequency @ 15 V
1
Figure 11. Input Bias Current vs. Temperature
1.50 VS = 18V RL =
SUPPLY CURRENT AMPLIFIER (mA)
OUTPUT VOLTAGE TO RAIL (V)
1.25
100m
SINK
1.00 VS = +3V RL = VS = +5V RL =
0.75
SOURCE 10m
0.50
0.25
00292-012
00292-009
1m
1
10
100 LOAD CURRENT (A)
1m
10m
0 -75
-50
-25
0
25
50
75
100
125
TEMPERATURE (C)
Figure 9. Output Voltage vs. Sink & Source Current
600 TA = 25C VS = 15V
1.50
Figure 12. Supply Current per Amplifier vs. Temperature
TA = 25C
SUPPLY CURRENT AMPLIFIER (mA)
00292-010
500
1.25
INPUT BIAS CURRENT (nA)
400
1.00
300
0.75
200
0.50
100
0.25
00292-013
0 -15
-10
-5
0
5
10
13.5
0
0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0
COMMON MODE VOLTAGE (V)
SUPPLY VOLTAGE (V)
Figure 10. Input Bias Current vs. Common-Mode Voltage
Figure 13. Supply Current per Amplifier vs. Supply Voltage
Rev. D | Page 8 of 16
OP183
60
140 TA = 25C VS = 15V 120 100 +PSRR 80
40 -1SC 30 +1SC 20
COMMON-MODE REJECTION (dB)
SHORT-CIRCUIT CURRENT (mA)
50
60 -PSRR 40
10
00292-014
0 -75
-50
-25
0
25
50
75
100
125
0 100
1k
10k FREQUENCY (Hz)
100k
1M
TEMPERATURE (C)
Figure 14. Short-Circuit Current vs. Temperature @ 5 V
60 -1SC
Figure 17. Power Supply Rejection vs. Frequency
90 80 70 TA = 25C VS = 3V RL = 10k GAIN
SHORT-CIRCUIT CURRENT (mA)
50
40 +1SC 30
60
GAIN (dB)
50 40
PHASE (Degrees) PHASE (Degrees)
30 PHASE 20 10 PHASE MARGIN = 43
195 90 45 0 1k 10k 100k FREQUENCY (Hz) 1M -45 10M
20
10
00292-015
00292-017
20
0 -10
0 -75
-50
-25
0
25
50
75
100
125
TEMPERATURE (C)
Figure 15. Short-Circuit Current vs. Temperature @ 15 V
140 TA = 25C VS = 15V 90 80 70 100 80 60
Figure 18. Open-Loop Gain and Phase vs. Frequency @ 3 V
COMMON-MODE REJECTION (dB)
120
TA = 25C VS = 5V RL = 10k GAIN
GAIN (dB)
50 40 30 PHASE 20 10 PHASE MARGIN = 46 195 90 45 0 1k 10k 100k FREQUENCY (Hz) 1M -45 10M
60 40
00292-016
0 -10
0 100
1k
10k FREQUENCY (Hz)
100k
1M
Figure 16. Common-Mode Rejection vs. Frequency
Figure 19. Open-Loop Gain and Phase vs. Frequency @ 5 V
Rev. D | Page 9 of 16
00292-019
20
00292-018
OP183
90 80 70 GAIN
SLEW RATE (V/s)
25 TA = 25C VS = 15V RL = 10k
20
60
VS = 15V RL = 2k SLEW RATE
GAIN (dB)
50 40
15
PHASE 20 10 0 -10 1k 10k 100k FREQUENCY (Hz) 1M
90 45 0 -45 10M
PHASE (Degrees)
30
PHASE MARGIN = 56
195
10
VS = 15V RL = 2k SLEW RATE
00292-023
5
00292-020
0 -75
-50
-25
0
25
50
75
100
125
TEMPERATURE (C)
Figure 20. Open-Loop Gain and Phase vs. Frequency @ 15 V
1000 900 800
OPEN-LOOP GAIN (V/mV) VOLTAGE NOISE DENSITY (nAHz)
Figure 23. Slew Rate vs. Temperature
30 TA = +25C VS = 15V OR VS = +3V, +15V
25
700 600 500 400 300 200 100 0 -75 -50 -25 0 25 50 75 100 VS = 15V OR VS = +3V RL = 2k VS = +5V RL = 2k
20
15
10
5
00292-024
00292-021
125
0
10
100 FREQUENCY (Hz)
1k
10k
TEMPERATURE (C)
Figure 21. Open-Loop Gain vs. Temperature
50 AV = 100 40
CLOSED-LOOP GAIN (dB)
Figure 24. Voltage Noise Density vs. Frequency
6
CURRENT NOISE DENSITY (pAHz)
TA = 25C VS = 15V
5
TA = 25C VS = 15V OR VS = +3V, +15V
30 AV = 10 20
4
3
10 AV = 1 0
2
00292-022
-20 1k 10k 100k FREQUENCY (Hz) 1M
10M
0
10
100 FREQUENCY (Hz)
1k
10k
Figure 22. Closed-Loop Gain vs. Frequency
Figure 25. Current Noise Density vs. Frequency
Rev. D | Page 10 of 16
00292-025
-10
1
OP183
100 90 80 70
IMPEDANCE ()
TA = 25C VS = 15V
60 50 40 30 AV = 10 20 10 0 100 1k 10k FREQUENCY (Hz) 100k
00292-026
1M
Figure 26. Closed-Loop Output Impedance vs. Frequency
80 70
SMALL SIGNAL OVERSHOOT (%)
Figure 29. Small Signal Performance @ 15 V
TA = 25C VS = 5V RL = 10k
60 50 40 30 20
00292-027
NEGATIVE EDGE
10 0
0
100
200
300
CAPACITANCE (pF)
Figure 27. Small Signal Overshoot vs. Load Capacitance
Figure 30. 0.1 Hz to 10 Hz Noise @ 2.5 V
00292-028
Figure 28. Large Signal Performance @ 15 V
Figure 31. 0.1 Hz to 10 Hz Noise @ 15 V
Rev. D | Page 11 of 16
00292-031
00292-030
POSITIVE EDGE
00292-029
AV = 1
OP183
0.1 OP183 VS = 2.5V AV = +1 RF = 0 VIN = 1VRMS 80kHz LOW-PASS FILTER 2k 0.010 5k
Preliminary Technical Data
600 1k
DISTORTION (%)
10
00292-032
0.001 0.0005 20 100 1k FREQUENCY (Hz)
NO LOAD
10k
20k
Figure 32. THD + Noise vs. Frequency for Various Loads
Rev. D | Page 12 of 16
OP183 APPLICATIONS
OFFSET ADJUST
Figure 33 shows how the offset voltage of the OP183 can be adjusted by connecting a potentiometer between Pins 1 and 5, and connecting the wiper to VEE. The recommended value for the potentiometer is 10 k. This will give an adjustment range of approximately 1 mV. If a larger adjustment span is desired, a 50 k potentiometer will yield a range of 2.5 mV.
VCC
This arrangement drives the transformer differentially so that the drive to the transformer is effectively doubled over a single amplifier arrangement. This application takes advantage of the ability of the OP183 to drive capacitive loads and to save power in single-supply applications.
300pF 37.4k 20k 0.1F A1 RxA
3
7
OP183
20k 3.3k
OP183
2 5 1 4
6
VOS
0.0047F
VEE
OP183
00292-033
A2
475
22.1k 0.1F TxA 20k 750pF 20k 20k
00292-034
00292-035
Figure 33. OP183 Offset Adjust
0.33F
PHASE REVERSAL
The OP183 is protected against phase reversal as long as both of the inputs are within the range of the positive supply and the negative supply -0.6 V. If there is a possibility of either input going beyond these limits, however, the inputs should be protected with a series resistor to limit input current to 2 mA.
2.5V REF
OP183
A3
Figure 34. Direct Access Arrangement
5 V ONLY STEREO DAC FOR MULTIMEDIA
The low noise and single-supply capability of the OP183 are ideally suited for stereo DAC audio reproduction or sound synthesis applications, such as multimedia systems. Figure 35 shows an 18-bit stereo DAC output setup that is powered from a single 5 V supply. The low noise preserves the 18-bit dynamic range of the AD1868.
DIRECT ACCESS ARRANGEMENT
The OP183 can be used in a single supply direct access arrangement (DAA) as shown in Figure 34. This figure shows a portion of a typical DAA capable of operating from a single 5 V supply; with minor modifications it should also work on 3 V supplies. Amplifiers A2 and A3 are configured so that the transmit signal TxA is inverted by A2 and not inverted by A3.
AD1868
1 2 3 4 5 6 7 8
VL LL DL CK DR LR 18-BIT SERIAL REG. 16-BIT DAC VREF 16-BIT DAC 18-BIT SERIAL REG. VREF
VBL
16 3 15 14 13 8
7.68k 330pF
9.76k
2
OP183
4
1
220F +-
LEFT CHANNEL 47k OUTPUT
VOL
100pF
AGND 12
11
7.68k 7.68k
DGND VBR
VOR
10
100pF VS 9 7.68k 330pF
5
9.76k
6
OP183
7
220F +-
RIGHT CHANNEL 47k OUTPUT
Figure 35. 5 V Only 18-Bit Stereo DAC
Rev. D | Page 13 of 16
OP183
LOW VOLTAGE HEADPHONE AMPLIFIERS
Figure 36 shows a stereo headphone output amplifier for the AD1849 16-bit SoundPort(R) Stereo Codec device. The pseudoreference voltage is derived from the common-mode voltage generated internally by the AD1849, thus providing a convenient bias for the headphone output amplifiers.
OPTIONAL GAIN 1k 5k 5V 10F LOUT1L 21 10k
L VOLUME CONTROL
3 V 50 HZ/60 HZ ACTIVE NOTCH FILTER WITH FALSE GROUND
To process ac signals, it may be easier to use a false-ground bias rather than the negative supply as a reference ground. This would reject the power line frequency interference which can often obscure low frequency physiological signals, such as heart rates, blood pressures, EEGs, and ECGs. Figure 38 shows a 50 Hz/60 Hz active notch filter for eliminating line noise in patient monitoring equipment. It has several kilohertz bandwidth and is not sensitive to false-ground perturbations. The simple false-ground circuit shown achieves good rejection of low frequency interference using standard offthe-shelf components.
R2 2.67k 3V
2
VREF
16 220F
OP183
47k
HEADPHONE LEFT
AD1849
5V
VREF CMOUT 19 10k LOUT1R
20 R VOLUME CONTROL
OP183
R1 2.67k
4
C1 1F R3 2.67k
C2 1F
6
OP183 A2
8 7
A1
OP183
5k 1k OPTIONAL GAIN 16 220F 47k HEADPHONE RIGHT
1 5
VIN R6 10k
3
R4 2.67k R5 1.33k (2.67k / 2)
VO
10F
OP183
C3 1F (1F x 2) R11 10k
R7 1k
R8 1k
00292-036
Q = 0.75 NOTE: FOR 50Hz APPLICATIONS CHANGE R1-R4 TO 3.1 AND R5 TO 1.58 (3.16 / 2). 0.75V C6 1F
00292-038
VREF
Figure 36. Headphone Output Amplifier for Multimedia Sound Codec
3V
3
C5 0.015F
LOW NOISE MICROPHONE AMPLIFIER FOR MULTIMEDIA
The OP183 is ideally suited as a low noise microphone preamp for low voltage audio applications. Figure 37 shows a gain of 100 stereo preamp for the AD1849 16-bit SoundPort Stereo Codec chip. The common-mode output buffer serves as a phantom power driver for the microphones.
10k 5V
R9 75k
4
R12 70
A3
R10 25k
1
C4 1F
OP183
Figure 38. 3 V Supply 50 Hz/60 Hz Notch Filter with Pseudo Ground
10F LEFT ELECTRET CONDENSER MIC INPUT 50 20 10k 5V
OP183
17 MINL
Amplifier A3 biases A1 and A2 to the middle of their input common-mode range. When operating on a 3 V supply, the center of the common-mode range of the OP183 is 0.75 V. This notch filter effectively squelches 60 Hz pickup at a filter Q of 0.75. To reject 50 Hz interference, change the resistors in the twin-T section (R1 through R5) from 2.67 k to 3.16 k. The filter section uses OP183 op amps in a twin-T configuration whose frequency selectivity is very sensitive to the relative matching of the capacitors and resistors in the twinT section. Mylar is the material of choice for the capacitors, and the relative matching of the capacitors and resistors determines the filter's pass-band symmetry. Using 1% resistors and 5% capacitors produces satisfactory results.
100
AD1849
19 CMOUT
1/2 OP219
20 10k 10F RIGHT ELECTRET CONDENSER MIC INPUT 50
100
OP183
18 MINR
00292-037
10k
Figure 37. Low Noise Stereo Microphone Amplifier for Multimedia Sound Codec
Rev. D | Page 14 of 16
OP183
LOW VOLTAGE FREQUENCY SYNTHESIZER FOR WIRELESS TRANSCEIVER
The low noise and low voltage operation capability of the OP183 serves well for the loop filter of a frequency synthesizer. Figure 39 shows a typical application in a radio transceiver. The phase noise performance of the synthesizer depends on low noise contribution from each component in the loop as the noise is amplified by the frequency division factor of the prescaler. The resistors used in the low-pass filter should be of low to moderate values to reduce noise contribution due to the input bias current as well as the resistors themselves. The filter cutoff frequency should be chosen to optimize the loop constant.
7
CRYSTAL
3V
OP183
REFERENCE OSCILLATOR PHASE DETECTOR
/ PRESCALER
V RF CONTROL OUT VCO 900MHz
00292-039
Figure 39. Low Voltage Frequency Synthesizer for a Wireless Transceiver
QB9 QB10 RB3
RB4
RB5
RB6 QB11 Q7 Q8 QB8 R9 Q12 QD2 Q5 Q6 CC2
QB6
QB7
R1 JB1
2
R2 Q2 Z1 CF1 Q3 Q4
3
Q1
QD1
CC3 R8
6
QB5A
R5 QD3
CB1 QB4 B A R10 QB2 RB2 RB1 QB1 R3LT R3AT R3B QB3
1 5
CO R7 R3A R4A CC1 R4B R11 QB13 R4AT R4LT QB12
00292-040
Q10 QB14
Q11
4
Figure 40. OP183 Simplified Schematic
Rev. D | Page 15 of 16
OP183 OUTLINE DIMENSIONS
5.00 (0.1968) 4.80 (0.1890)
8 5
4.00 (0.1574) 3.80 (0.1497) 1
6.20 (0.2440)
4 5.80 (0.2284)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040)
1.75 (0.0688) 1.35 (0.0532)
0.50 (0.0196) x 45 0.25 (0.0099)
0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE
8 0.25 (0.0098) 0 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Figure 41. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) S-Suffix Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model OP183GS OP183GS-REEL OP183GS-REEL7 OP183GSZ 1 OP183GSZ-REEL1 OP183GSZ-REEL71
1
Temperature Range -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C
Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N
Package Option S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8)
Z = Pb free part.
(c)2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00292-0-5/05(D)
Rev. D | Page 16 of 16


▲Up To Search▲   

 
Price & Availability of OP18305

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X